Many of the tools that will help us build a regenerative future are not only currently available now, but have been for centuries. Emerging capabilities like: Extended Intelligence, generative design, programmable materials, shape-shifting structures, clean energy, and biodegradable components, will further augment our ancient abilities. A combination of traditional and experimental tools will guide humanity in assembling sustainable, adaptive, and regenerative systems to take care of our growing population.
Rebuild: Subchapter II.
Timeless Tools
Reintegrating Ancient Techniques
Math and mechanics haven’t changed as much as their applications have. There is much to be gained from rediscovering the dexterity of long-established craft traditions that reveal the beauty of math and mechanics. We believe these traditions can offer an example of how to design patterns of connection through timeless techniques.
Like textiles, humanity’s societal fabric is a complex arrangement of interconnected patterns. To improve connections between strangers, much can be learned from studying how complex patterns in physical materials can be decoded, understood, and reworked into new practical applications.
The National Science Foundation recently funded a new five-year project called “What a Tangled Web We Weave” to investigate the mathematics and mechanics of knitting. This deft manipulation of yarn is an ancient technology with futuristic potential, and the lead researcher, Dr. Matsumoto, is compiling a knowledge base of different stitches and the ways to describe a knit’s qualities, like “emergent elasticity”. The stitch patterns Dr. Matsumoto’s team are investigating constitute a code that is more complex than binary, and results in much more malleable matter. Through an intersection of applied mathematics, nonlinear elasticity, materials engineering, and “soft condensed matter physics”, Dr. Matsumoto’s project is advancing understanding around “topological programmable materials”.6 The timeless techniques shown in this work reveal beauty not only in their assembling process but also in the resulting products. We feel inspired by the timeless tradition of knitting as an adaptable process that can integrate nearly endless varieties of materials. We sense a connection between learning to strengthen our skills at weaving together textiles and our human need for weaving together stories within our communities and relationships.
Scientific inquiries into ancient practices, allow for innovative interpretations of those practices. In terms of new practical applications for how topological programmable materials can be developed, perhaps the fusion of ancient stitch-work with emerging materials might enable clothing that’s wirelessly connected, with the wires stitched directly into the fabric. Taking a broader perspective, the ways in which we integrate digital layers of information into our physical reality, can benefit from increasingly seamless integrations. We are curious how low-tech skills like knitting might show us a wise way forward.
Biomimicry as a Powerful Tool for Systems Architecture
We can learn to emulate the master craftsmans-hip of all living systems. The regenerative nature of cells offers an ideal reference point for renewal.
“Sensitized to such guidance from the very structure and functioning of the universe, we can have confidence in the future that awaits the human venture.” — Thomas Berry
We are proud of human ingenuity, but it pales in comparison to the inventive genius of nature. There’s no need to be too downtrodden by this; rather, we should be elated by this fact. After all, it means that much of the hard work has already been done for us. We just have to copy what nature has already figured out.
The idea of biomimicry was popularized by Janine Benyus in her 1997 book Biomimicry: Innovation Inspired by Nature. In her book, she proposes that models found in nature should be drawn upon as a rich source of inspiration for industrial design. She believes that we can look to the intricate structures, and biological processes, found in organic entities, and apply the concepts already learned by plants and animals, in order to solve human problems. It’s certainly not a new idea, people have been taking lessons from the natural world as long as people have existed. And we’ve made strides over the last centuries. Observations of flying creatures offered the earliest inspirations for mechanical flying machines. The Chipewyan people, indigenous to what we now call Western Canada, learned more effective hunting techniques through observing how packs of wolves stalk their prey.
Through millennia of trial and error, natural processes have innovated a staggeringly, diverse collection of life-forms. There are countless genetic adaptations that have been made for every living situation on planet Earth. These mutations offer a huge wealth of potential knowledge, to be attained to better see how species learn to evolve with their environment. One area in which nature especially excels is in its efficient use of energy. In the often harsh conditions of the wild, it is a necessity to conserve energy whenever possible. Mathematician Karen Uhlenbeck, in her studies of the structure and behavior of bubbles, revealed how “nature optimizes its every structure for gain at minimal cost.”7
Rapidly worsening climate change conditions, caused by rising levels of co₂ in our atmosphere, means that it has never been more a pressing issue for us to find new ways to capture, store, and use energy efficiently. Already there are examples of this thought process in action. Zimbabwean architect Mick Pearce analyzed the air flow and thermal properties of termite mounds and designed an entire building capable of self-cooling without air conditioning based on these insects’ design model. On the other side of the world, scientists from MIT have been researching how the structure of sunflower petals can be used to configure high-density arrangements of solar panels. They’ve found that by copying the pattern and spacing of their pedals in their solar technology design, that land use can be reduced by 20% with no loss in energy capture. Similarly, researchers at Caltech applied the same thinking in their studies of the vortices generated by the movements of schools of fish, in order to arrange wind turbines more effectively. These examples show us the tangible benefits of imitating the elegance of nature by leveraging forces that do not contribute to further planetary devastation.
At the MIT Media Lab, Neri Oxman has been working at the intersection of computational design, digital fabrication, materials science, and synthetic biology. Her group concentrates on the search for “materials and chemical substances that can sustain and enhance biodiversity across living systems, and that have so far endured the perils of climate change.” One particularly enchanting project called Totems explored the properties of melanin.8
Melanin, known as the “universal pigment”, shows up in skin, hair, eyes, feathers, wings, and even ink sacs of squid. Evidence of melanin’s evolution dates back to giant squid fossils from around 160 million years ago.9 Oxman’s group, Mediated Matter, describes melanin as an expression of “unity in the diversity of life”. The group has created a series of spherical orbs featuring the dynamic compositions, and diverse colors, of liquid melanin, grown into fixed channels. These beautiful structures speak to the ever-evolving expressions of color and distinctiveness throughout various forms of life. By interpreting a feature of evolution, like melanin, into fabricated physical objects, those who come into contact with these structures are able to sense a connection to an exceptional force of creativity. This example of biomimicry brings the vivid quality of a timeless evolutionary occurrence to the forefront of our imagination.
But biomimicry can also go deeper. After all, we do not want to simply appropriate natural phenomena for singular ends. Rather, we want to fully internalize and manifest nature’s most profound teachings. The harmony of biological ecosystems can be our framework for rearranging ourselves on a mass scale.
We are manifestations of nature just like any living being, but we must begin to compromise in our negotiations with the rest of the natural world. Rather than force our demands through coercion, we should begin to show nature the same flexibility we ask of everything else. Other living systems have their own needs and rights themselves. Co-existence is a matter of give and take. As we begin to build relationships between ourselves based on mutual aid, so too must we extend this altruistic notion to the various living organisms on this planet. And if we treat our planet well, it will treat us kindly in return.
Utilizing the Veil of Ignorance for Social Fairness
Questions of morality are often deeply subjective. And yet, the vast majority of people would probably consider themselves to be generally moral by their own standards. We believe everyone can benefit from tools to help impart moral clarity.
Let’s assume that we want to build a fair and moral society that does not favor certain groups at the expense of others. How can this be done when our understanding of fairness may vary so drastically? The “veil of ignorance” as a concept has been discussed for centuries, and more recently revisited by philosopher John Rawls. The idea is laid out in a thought experiment, examining the deliberation of political decisions from behind a mental veil. Imagine a decision-maker who operates in complete ignorance of their own relative status within a prospective future. The decision-maker’s own attributes—such as ethnicity, gender, economic class, health —are complete unknowns to him or her. In this way, the decision-maker could well find themselves on either side of any relationship with an ingrained imbalance of power. Unless this particular individual is a gambler, the theory upholds the expectation that this decision-maker would take great care to craft a truly fair society, expunged of exploitation of any kind for fear of potentially being the victim of their own design.
The veil of ignorance shares a certain element at its core with the Golden Rule. Found in some form in countless religions throughout the centuries, the Golden Rule can be expressed: “do unto others as you would have them do unto you” or, in the negative, “do not do unto others as you would not have them do unto you”. Both ideas rely upon the sense of self as the most effective arbiter of moral action. If something feels intuitively desirable or undesirable to us, we can assume that this is true for others as well. With this barometer to gauge right from wrongdoing in place, we can become less susceptible to potentially ruinous risk-taking.
As a thought experiment, the veil of ignorance reveals the role of bias in decision-making. In the real world, those with the power to make major structural decisions are likely the beneficiaries of certain structural favorability. Those who consciously practice moral action are already geared toward the pursuit of fairness. The veil of ignorance would be most effective as a way of redirecting the intuition of one who is normally inclined to act exclusively in their own self-interest toward decision-making that would be more equitable for all who are impacted by the effects of that individual’s decisions.
Ultimately, there is no shortcut to morality. There is no set of hard and fast rules we can use to determine what are the right things to do. Building a new vision for the future requires that we venture into unknown spaces. What we find there will necessitate entirely new kinds of thinking for which established ideologies may not have the requisite tools to navigate. But we can adhere to simple principles in our journey to this future: don’t hurt people, be kind, and don’t seek to control others. These guidelines can create a general field for us to play in, but they are not a system in and of themselves. The world is messy and unclear, and that certainly isn’t going to change. We should not look for a prepackaged solution to moral decision-making. Rather, we must learn to be able to decide for ourselves what is fair and just. By employing guiding principles—like the veil of ignorance and the Golden Rule—we will have a much better chance at ensuring that the decisions we make will not cause harm. It is never too late to start being empathic and compassionate. Within interpersonal relationships, as much as in policy-making, we are well served when we consider the ramifications of our actions beyond our own self-interests.
Choose Extended Intelligence Over Artificial Intelligence
AI evokes a tool. EI evokes a partnership. We believe in the importance of setting a collaborative intention for how we integrate the super intelligence of machines into our lives.
“The crucial role of humans in an EI system is to understand and group information to inform analyses in new ways. Intuition and invention allow for the combination of data in different ways to tease out new understanding.” — Satya Basu
The ways in which we deploy machine learning to enhance human endeavor must also respect the fundamental inter-relationships between people and all living systems. For this reason, we find value in distinguishing EI from AI.10 Extended Intelligence can serve as an integral component to the complex systems that comprise the world we inhabit.
As human-made systems—including the machines and algorithms that accomplish many of our tasks—become increasingly capable of taking over work, it is essential we see those systems as an extension of ourselves, and not as something separate. We don’t want our most powerful technologies to replace us. We want them to work with us.
When it comes to how we think about technology working on our behalf, there are massive economic and social implications at play. Pursuit of capital markets has facilitated major progress. Massive enterprises have succeeded through the sourcing of capital. In many ways, humans have already entrusted our ownership of these capital markets over to the machines, because bots trade stocks in nanoseconds. This might be efficient, but in the quest for efficiency, we seem to be giving up agency over our own humanity.
We need to secure the integrity of these relationships between influential human enterprises and of new machine technologies. To this end, we also need to claim the right to experience innovation in our own lives without the necessity of a new gadget. We want to keep our focus on the importance of building innovations in connection to our minds. In this way, we can honor the complexity of one of nature’s most mysterious systems.
In a recent move to further propel the idea of Extended Intelligence, the MIT Media Lab has partnered with the IEEE Standards Association (IEEE-SA) to create a global Council on Extended Intelligence. The heart of this partnership rests on the importance of social and ethical progress through responsible design. The council emphasizes a “holistic evolution of our species in positive alignment with the environmental and other systems comprising the modern algorithmic world”.11 In pursuing this theoretical framework, the relationship between humans and machines can evolve along more thoughtful and responsible guidelines. This is a vision of the future of new technology in which we choose to participate.